

William Navidi \leftrightarrow Barry Monk

Second Edition

Essential STATISTICS

$\underset{\text { Colorado School of Mines }}{\text { William }} \otimes \quad \begin{aligned} & \text { Barry Monk Middle Georgia State University }\end{aligned}$

ELEMENTARY STATISTICS, SECOND EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2018 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Previous editions © 2013. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper
1234567890 LWI 109876

ISBN 978-1-259-57064-3
MHID 1-259-57064-9
ISBN 978-1-259-86957-0 (Annotated Instructor's Edition)
MHID 1-259-86957-1

Chief Product Officer, SVP Products \& Markets: G. Scott Virkler
Vice President, General Manager, Products \& Markets: Marty Lange
Vice President, Content Design \& Delivery: Betsy Whalen
Managing Director: Ryan Blankenship
Brand Manager: Adam Rooke
Director, Product Development: Rose Koos
Product Developer: Vincent Bradshaw
Marketing Director: Sally Yagan
Marketing Coordinator: Annie Clarke
Director of Digital Content: Cynthia Northrup
Digital Product Analyst: Ruth Czarnecki-Lichstein
Associate Digital Product Analyst: Adam Fischer
Director, Content Design \& Delivery: Linda Avenarius
Program Manager: Lora Neyens
Content Project Manager: Peggy J. Selle
Assessment Content Project Manager: Emily Windelborn
Buyer: Laura Fuller
Design: Tara McDermott
Content Licensing Specialist (Photo): Carrie Burger
Content Licensing Specialist (Text): Lori Slattery
Cover Image: ©Alexander Chernyakov/Getty Images
Compositor: SPi-Global
Typeface: 10/12 STIX MathJax Main Regular
Printer: LSC Communications
All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Names: Navidi, William Cyrus. I Monk, Barry (Barry J.) | Navidi, William
Cyrus. Elementary statistics essentials.
Title: Essential statistics / William Navidi, Colorado School of Mines, Barry Monk, Middle Georgia State College.
Other titles: Elementary statistics essentials
Description: Second edition. I New York, NY : McGraw Hill, 2017. I Includes
index.
Identifiers: LCCN 2016027918 I ISBN 9781259570643 (alk. paper)
Subjects: LCSH: Mathematical statistics—Textbooks.
Classification: LCC QA276.12 .N386 2017 I DDC 519.5-dc23 LC record available
at https://lcen.loc.gov/2016027918

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented at these sites.
mheducation.com/highered

To Catherine, Sarah, and Thomas
 —William Navidi

$$
\begin{aligned}
& \text { To Shaun, Dawn, and Ben } \\
& \text {-Barry Monk }
\end{aligned}
$$

About the Authors

William Navidi is a professor of Applied Mathematics and Statistics at the Colorado School of Mines in Golden, Colorado. He received a Bachelor's degree in Mathematics from New College, a Master's degree in Mathematics from Michigan State University, and a Ph.D. in Statistics from the University of California at Berkeley. Bill began his teaching career at the County College of Morris, a two-year college in Dover, New Jersey. He has taught mathematics and statistics at all levels, from developmental through the graduate level. Bill has written two Engineering Statistics textbooks for McGraw-Hill. In his spare time, he likes to play racquetball.

Barry Monk is a Professor of Mathematics with Middle Georgia State University in Macon, Georgia. Barry received a Bachelor of Science in Mathematical Statistics, a Master of Arts in Mathematics specializing in Optimization and Statistics, and a Ph.D. in Applied Mathematics, all from the University of Alabama. Barry has been teaching Introductory Statistics since 1992 in the classroom and online environments. Barry has a minor in Creative Writing and is a skilled jazz pianist.
Preface ix
Index of Applications xx
CHAPTER Basic Ideas 1
CHAPTER 2
Graphical Summaries of Data 35
chapter 3 Numerical Summaries of Data 89
chapter 4 Probability 149
chapter 5 Discrete Probability Distributions 197
chapter 6 The Normal Distribution 229
CHAPTER 7 Confidence Intervals 285
CHAPTER Hypothesis Testing 337
chapter 9 Inferences on Two Samples 401
CHAPTER 10 Tests with Qualitative Data 457
chapter 11 Correlation and Regression 483

Preface

This book is designed for an introductory course in statistics. The mathematical prerequisite is basic algebra. In addition to presenting the mechanics of the subject, we have endeavored to explain the concepts behind them in a writing style as straightforward, clear, and engaging as we could make it. As practicing statisticians, we have done everything possible to ensure that the material is accurate and correct. We believe that this book will enable instructors to explore statistical concepts in depth yet remain easy for students to read and understand.

To achieve this goal, we have incorporated a number of useful pedagogical features:

Features

- Check Your Understanding Exercises: After each concept is explained, one or more exercises are immediately provided for students to be sure they are following the material. These exercises provide students with confidence that they are ready to go on, or alert them to the need to review the material just covered.
- Explain It Again: Many important concepts are reinforced with additional explanation in these marginal notes.
- Real Data: Statistics instructors universally agree that the use of real data engages students and convinces them of the usefulness of the subject. A great many of the examples and exercises use real data. Some data sets explore topics in health or social sciences, while others are based in popular culture such as movies, contemporary music, or video games.
- Integration of Technology: Many examples contain screenshots from the TI-84 Plus calculator, MINITAB, and Excel. Each section contains detailed, step-by-step instructions, where applicable, explaining how to use these forms of technology to carry out the procedures explained in the text.
- Interpreting Technology: Many exercises present output from technology and require the student to interpret the results.
- Write About It: These exercises, found at the end of each chapter, require students to explain statistical concepts in their own words.
- Case Studies: Each chapter begins with a discussion of a real problem. At the end of the chapter, a case study demonstrates applications of chapter concepts to the problem.

Flexibility

We have endeavored to make our book flexible enough to work effectively with a wide variety of instructor styles and preferences. We cover both the P-value and critical value approaches to hypothesis testing, so instructors can choose to cover either or both of these methods.

Instructors differ in their preferences regarding the depth of coverage of probability. A light treatment of the subject may be obtained by covering Section 4.1 and skipping the rest of the chapter. More depth can be obtained by covering Section 4.2.

Supplements

Supplements, including online homework, videos, and PowerPoint presentations, play an increasingly important role in the educational process. As authors, we have adopted a hands-on approach to the development of our supplements, to make sure that they are consistent with the style of the text and that they work effectively with a variety of instructor preferences. In particular, our online homework package offers instructors the flexibility to choose whether the solutions that students view are based on tables or technology, where applicable.

New in This Edition

The second edition of the book is intended to extend the strengths of the first. Some of the changes are:

- The material introducing the normal distribution has been rewritten to make it equally accessible for those using tables or technology.
- The material on percentiles and quantiles has been rewritten to make it easier for those who wish to cover quantiles without covering percentiles.
- A large number of new exercises have been included, many of which involve real data from recent sources.
- Several of the case studies have been updated.
- The exposition has been improved in a number of places.

Feedback from Statistics Instructors

Paramount to the development of Essential Statistics was the invaluable feedback provided by the instructors from around the country who reviewed the manuscript while it was in development.

Over 150 instructors reviewed the manuscript from the first draft through the final manuscript, providing feedback to the authors at each stage of development.
AnsrSource accuracy checked every worked example and exercise in the text numerous times, both in the final phase of the manuscript and in the page proof stages.
Focus groups and symposia were conducted with instructors from around the country to provide feedback to editors and the authors to ensure the direction of the text was meeting the needs of students and instructors.

A Special Thanks to All of the Symposia and Focus Group
 Attendees Who Helped Shape Essential Statistics, First and Second Editions

James Adair, Dyersburg State Community College Andrea Adlman, Ventura College Leandro Alvarez, Miami Dade College Simon Aman, City Colleges of Chicago Diane Benner, Harrisburg Area Community College Karen Brady, Columbus State Community College Liliana Brand, Northern Essex Community College Denise Brown, Collin College-Spring Creek Don Brown, Middle Georgia State University
Mary Brown, Harrisburg Area Community College
Gerald Busald, San Antonio College
Anna Butler, Polk State College
Robert Cappetta, College of DuPage
Joe Castillo, Broward College
Michele Catterton, Harford Community College
Tim Chappell, Metropolitan Communiity College - Penn Valley
Ivette Chuca, El Paso Community College
James Condor, State College of Florida
Milena Cuellar, LaGuardia Community College
Phyllis Curtiss, Grand Valley State University
Hema Deshmukh, Mercyhurst University
Mitra Devkota, Shawnee State University
Sue Jones Dobbyn, Pellissippi State Community College
Rob Eby, Blinn College-Bryan Campus
Charles Wayne Ehler, Anne Arundel Community College
Franco Fedele, University of West Florida
Robert Fusco, Broward College
Wojciech Golik, Lindenwood University
Tim Grant, Southwestern Illinois College
Todd Hendricks, Georgia State University, Perimeter College
Mary Hill, College of DuPage
Steward Huang, University of Arkansas-Fort Smith
Vera Hu-Hyneman, Suffolk County Community College
Laura Iossi, Broward College
Brittany Juraszek, Santa Fe College
Maryann Justinger, Erie Community College-South Campus
Joseph Karnowski, Norwalk Community College
Esmarie Kennedy, San Antonio College
Lynette Kenyon, Collin College-Plano
Raja Khoury, Collin College-Plano

Alexander Kolesnik, Ventura College Holly Kresch, Diablo Valley College
JoAnn Kump, West Chester University
Dan Kumpf, Ventura College
Erica Kwiatkowski-Egizio, Joliet Junior College
Pam Lowry, Bellevue College
Corey Manchester, Grossmont College
Scott McDaniel, Middle Tennessee State University
Mikal McDowell, Cedar Valley College
Ryan Melendez, Arizona State University
Lynette Meslinsky, Erie Community College
Penny Morris, Polk State College
Brittany Mosby, Pellissippi State Community College
Cindy Moss, Skyline College
Kris Mudunuri, Long Beach City College
Linda Myers, Harrisburg Area Community College
Sean Nguyen, San Francisco State University
Ronald Palcic, Johnson County Community College
Matthew Pragel, Harrisburg Area Community College
Blanche Presley, Middle Georgia State University
Ahmed Rashed, Richland College
Cyndi Roemer, Union County College
Ginger Rowell, Middle Tennessee State University
Sudipta Roy, Kanakee Community College
Ligo Samuel, Austin Peay State University
Jamal Salahat, Owens State Community College
Kathy Shay, Middlesex County College
Laura Shick, Clemson University
Larry Shrewsbury, Southern Oregon University
Shannon Solis, San Jacinto College-North
Tommy Thompson, Cedar Valley College John Trimboli, Middle Georgia State University Rita Sowell, Volunteer State Community College Chris Turner, Pensacola State College Jo Tucker, Tarrant County College
Dave Vinson, Pellissippi State Community College
Henry Wakhungu, Indiana University
Bin Wang, University of South Alabama
Daniel Wang, Central Michigan University
Jennifer Zeigenfuse, Anne Arundel Community College

Acknowledgments

We are indebted to many people for contributions at every stage of development. Colleagues and students who reviewed the evolving manuscript provided many valuable suggestions. In particular, John Trimboli, Don Brown, and Duane Day contributed to the supplements, and Mary Wolfe helped create the video presentations. Ashlyn Munson contributed a number of exercises, and Tim Chappell played an important role in the development of our digital content.

The staff at McGraw-Hill has been extremely capable and supportive. Project Manager Peggy Selle was always patient and helpful. Rob Brieler was superb in directing the development of our digital content. We owe a debt of thanks to Sally Yagan, for her creative marketing and diligence in spreading the word about our book. We appreciate the guidance of our editors, Ryan Blankenship, Adam Rooke, and Christina Sanders, whose input has considerably improved the final product.

William Navidi
Barry Monk

Manuscript Review Panels

Alisher Abdullayev, American River College
Andrea Adlman, Ventura College
Olcay Akman, Illinois State University
Raid Amin, University of West Florida
Wesley Anderson, Northwest Vista College
Peter Arvanites, Rockland Community College
Diana Asmus, Greenville Technical College
John Avioli, Christopher Newport University
Robert Bass, Gardner-Webb University
Robbin Bates-Yelverton, Park University
Lynn Beckett-Lemus, El Camino College
Diane Benner, Harrisburg Area Community College
Abraham Biggs, Broward College
Wes Black, Illinois Valley Community College
Gregory Bloxom, Pensacola State College
Dale Bowman, University of Memphis
Brian Bradie, Christopher Newport University
Tonia Broome, Gaston College
Donna Brouilette, Georgia State University, Perimeter College
Allen Brown, Wabash Valley College
Denise Brown, Collin Community College
Don Brown, Middle Georgia State University
Mary Brown, Harrisburg Area Community College
Jennifer Bryan, Oklahoma Christian University
William Burgin, Gaston College
Gerald Busald, San Antonio College

David Busekist, Southeastern Louisiana University
Lynn Cade, Pensacola State College
Elizabeth Carrico, Illinois Central College
Connie Carroll, Guilford Technical Community College
Joseph Castillo, Broward College
Linda Chan, Mount San Antonio College \& Pasadena City College
Ayona Chatterjee, University of West Georgia
Chand Chauhan, Indiana University Purdue University Fort Wayne
Pinyuen Chen, Syracuse University
Askar Choudhury, Illinois State University
Lee Clendenning, University of North Georgia
James Condor, State College of Florida-Manatee
Natalie Creed, Gaston College
John Curran, Eastern Michigan University
John Daniels, Central Michigan University
Shibasish Dasgupta, University of South Alabama
Nataliya Doroshenko, University of Memphis
Brandon Doughery, Montgomery County Community College
Larry Dumais, American River College
Christina Dwyer, State College of Florida-Manatee
Wayne Ehler, Anne Arundel Community College
Mark Ellis, Central Piedmont Community College
Angela Everett, Chattanooga State Technical Community College

Franco Fedele, University of West Florida Harshini Fernando, Purdue University—North Central Art Fortgang, Southern Oregon University
Thomas Fox, Cleveland State Community College Robert Fusco, Broward College
Linda Galloway, Kennesaw State University David Garth, Truman State University

Sharon Giles, Grossmont Community College
Mary Elizabeth Gore, Community College of Baltimore County
Carrie Grant, Flagler College
Delbert Greear, University of North Georgia
Jason Greshman, Nova Southeastern University
David Gurney, Southeastern Louisiana University
Chris Hail, Union University-Jackson
Ryan Harper, Spartanburg Community College
Phillip Harris, Illinois Central College
James Harrington, Adirondack Community College
Matthew He, Nova Southeastern University
Mary Beth Headlee, State College of Florida-Manatee
James Helmreich, Marist College
Todd Hendricks, Georgia State University, Perimeter College
Jada Hill, Richland College
Mary Hill, College of DuPage
William Huepenbecker, Bowling Green State University-Firelands
Patricia Humphrey, Georgia Southern University
Nancy Johnson, State College of Florida-Manatee
Maryann Justinger, Erie Community College-South Campus
Joseph Karnowski, Norwalk Community College
Susitha Karunaratne, Purdue University-North Central
Ryan Kasha, Valencia College—West Campus
Joseph Kazimir, East Los Angeles College
Esmarie Kennedy, San Antonio College
Lynette Kenyon, Collin College
Gary Kersting, North Central Michigan College
Raja Khoury, Collin College
Heidi Kiley, Suffolk County Community College-Selden
Daniel Kim, Southern Oregon University
Ann Kirkpatrick, Southeastern Louisiana University

John Klages, County College of Morris
Karon Klipple, San Diego City College
Matthew Knowlen, Horry Georgetown Tech College
JoAnn Kump, West Chester University
Alex Kolesnik, Ventura College
Bohdan Kunciw, Salisbury University
Erica Kwiatkowski-Egizio, Joliet Junior College
William Langston, Finger Lakes Community College
Tracy Leshan, Baltimore City Community College Nicole Lewis, East Tennessee State University
Jiawei Liu, Georgia State University
Fujia Lu, Endicott College
Timothy Maharry, Northwestern Oklahoma State University
Aldo Maldonado, Park University
Kenneth Mann, Catawba Valley Community College
James Martin, Christopher Newport University
Erin Martin-Wilding, Parkland College
Amina Mathias, Cecil College
Catherine Matos, Clayton State University
Angie Matthews, Broward College
Mark McFadden, Montgomery County Community College
Karen McKarnin, Allen Community College
Penny Morris, Polk Community College
B. K. Mudunuri, Long Beach City College-CalPoly Pomona
Linda Myers, Harrisburg Area Community College Miroslaw Mystkowski, Gardner-Webb University
Shai Neumann, Brevard Community College
Francis Nkansah, Bunker Hill Community College
Karen Orr, Roane State Community College
Richard Owens, Park University
Irene Palacios, Grossmont College
Luca Petrelli, Mount Saint Mary's University
Blanche Presley, Middle Georgia State University
Robert Prince, Berry College
Richard Puscas, Georgia State University, Perimeter College
Ramaswamy Radhakrishnan, Illinois State University Leela Rakesh, Central Michigan University Gina Reed, University of North Georgia

Andrea Reese, Daytona State College-Daytona Beach Jim Robison-Cox, Montana State University Alex Rolon, Northampton Community College Jason Rosenberry, Harrisburg Area Community College
Yolanda Rush, Illinois Central College Loula Rytikova, George Mason University Fary Sami, Harford Community College
Vicki Schell, Pensacola State College
Carol Schoen, University of Wisconsin-Eau Claire
Pali Sen, University of North Florida
Rosa Seyfried, Harrisburg Area Community College Larry Shrewsbury, Southern Oregon University Abdallah Shuaibi, Truman College Rick Silvey, University of Saint Mary
Russell Simmons, Brookhaven College
Peggy Slavik, University of Saint Mary
Karen Smith, University of West Georgia
Pam Stogsdill, Bossier Parish Community College

Susan Surina, George Mason University
Victor Swaim, Southeastern Louisiana University
Scott Sykes, University of West Georgia
Van Tran, San Francisco State University
John Trimboli, Middle Georgia State University
Barbara Tucker, Tarrant County College South East
Steven Forbes Tuckey, Jackson Community College
Christopher Turner, Pensacola State College Anke Van Zuylen, College of William and Mary Dave Vinson, Pellissippi State Community College Joseph Walker, Georgia State University James Wan, Long Beach City College Xiaohong Wang, Central Michigan University Jason Willis, Gardner-Webb University Fuzhen Zhang, Nova Southeastern University Yichuan Zhao, Georgia State University Deborah Ziegler, Hannibal LaGrange University Bashar Zogheib, Nova Southeastern University Stephanie Zwyghuizen, Jamestown Community College

Multimedia Supplements

Connect www.connectmath.com

McGraw-Hill conducted in-depth research to create a new learning experience that meets the needs of students and instructors today. The result is a reinvented learning experience rich in information, visually engaging, and easily accessible to both instructors and students.

- McGraw-Hill's Connect is a Web-based assignment and assessment platform that helps students connect to their coursework and prepares them to succeed in and beyond the course.
- Connect enables math and statistics instructors to create and share courses and assignments with colleagues and adjuncts with only a few clicks of the mouse. All exercises, learning objectives, and activities are vetted and developed by math instructors to ensure consistency between the textbook and the online tools.
- Connect also links students to an interactive eBook with access to a variety of media assets and a place to study, highlight, and keep track of class notes.
 experience available for the higher education market. Powered by the intelligent and adaptive LearnSmart engine, SmartBook facilitates the reading process by identifying what content a student knows and doesn't know. As a student reads, the material continuously adapts to ensure the student is focused on the content he or she needs the most to close specific knowledge gaps.

ALEKS Prep for Statistics

ALEKS Prep for Statistics can be used during the beginning of the course to prepare students for future success and to increase retention and pass rates. Backed by two decades of National Science Foundation-funded research, ALEKS interacts with students much as a human tutor, with the ability to precisely assess a student's preparedness and provide instruction on the topics the student is ready to learn.

ALEKS Prep for Statistics

- Assists students in mastering core concepts that should have been learned prior to entering the present course.
- Frees up lecture time for instructors, allowing more time to focus on current course material and not review material.
- Provides up to six weeks of remediation and intelligent tutorial help to fill in students' individual knowledge gaps.

Electronic Textbook

CourseSmart is a new way for faculty to find and review eTextbooks. It's also a great option for students who are interested in accessing their course materials digitally and saving money. CourseSmart offers thousands of the most commonly adopted textbooks across hundreds of courses from a wide variety of higher education publishers. It is the only place for faculty to review and compare the full text of a textbook online, providing immediate access without the environmental impact of requesting a print exam copy. At CourseSmart, students can save up to 50% off the cost of a print book, reduce the impact
on the environment, and gain access to powerful Web tools for learning including full text search, notes and highlighting, and email tools for sharing notes between classmates. www.CourseSmart.com

MegaStat ${ }^{\circledR}$

MegaStat ${ }^{\circledR}$ is a statistical add-in for Microsoft Excel, handcrafted by J. B. Orris of Butler University. When MegaStat is installed, it appears as a menu item on the Excel menu bar and allows you to perform statistical analysis on data in an Excel workbook.

Computerized Test Bank (CTB) Online (instructors only)

The computerized test bank contains a variety of questions, including true/false, multiplechoice, short-answer, and short problems requiring analysis and written answers. The testing material is coded by type of question and level of difficulty. It also allows for printing tests along with answer keys as well as editing the original questions, and it is available for Windows and Macintosh systems. Printable tests and a print version of the test bank can also be found on the website.

Videos

Videos by the authors introduce concepts, definitions, theorems, formulas, and problemsolving procedures to help students comprehend topics throughout the text. They show students how to work through selected exercises, following methodology employed in the text. These videos are closed-captioned for the hearing-impaired, are subtitled in Spanish, and meet the Americans with Disabilities Act Standards for Accessible Design.

SPSS Student Version for Windows

A student version of SPSS statistical software is available with copies of this text. Consult your McGraw-Hill representative for details.

Instructor's Solution Manual

Derived from author solutions, this manual contains detailed solutions to all of the problems in the text.

Guided Student Notes

Guided notes provide instructors with the framework of day-by-day class activities for each section in the book. Each lecture guide can help instructors make more efficient use of class time and can help keep students focused on active learning. Students who use the lecture guides have the framework of well-organized notes that can be completed with the instructor in class.

Data Sets

Data sets from selected exercises have been pre-populated into MINITAB, TI-Graph Link, Excel, SPSS, and comma-delimited ASCII formats for student and instructor use. These files are available on the text's website.

MINITAB 17 Manual

With guidance from the authors, this manual includes material from the book to provide seamless use from one to the other, providing additional practice in applying the chapter concepts while using the MINITAB program.

TI-84 Plus Graphing Calculator Manual

This friendly, author-influenced manual teaches students to learn about statistics and solve problems by using this calculator while following each text chapter.

Excel Manual

This workbook, specially designed to accompany the text by the authors, provides additional practice in applying the chapter concepts while using Excel.

Print Supplements

Annotated Instructor's Edition (instructors only)

The Annotated Instructor's Edition contains answers to all exercises. The answers to most questions are printed in blue next to each problem. Answers not appearing on the page can be found in the Answer Appendix at the end of the book.

Student's Solution Manual

Derived from author solutions, this manual contains detailed solutions to all odd-numbered text problems and answers to all Quizzes, Reviews, and Case Study problems found at the end of each chapter.

Contents

Index of Applications xx

CHAPTER 1 Basic Ideas 1

U.S. Fish \& Wildlife Service
1.1 Sampling 2
1.2 Types of Data 12
1.3 Design of Experiments 18
1.4 Bias in Studies 26

Chapter 1 Summary 30
Chapter Quiz 30
Review Exercises 31
Case Study 32

CHAPTER 2 Graphical Summaries of Data 35

© Photodisc/Getty Images RF
2.1 Graphical Summaries for Qualitative Data 36
2.2 Frequency Distributions and Their Graphs 49
2.3 More Graphs for Quantitative Data 65
2.4 Graphs Can Be Misleading 76

Chapter 2 Summary 82
Chapter Quiz 82
Review Exercises 83
Case Study 87

CHAPTER 3 Numerical Summaries of Data 89

© PhotoLink/Getty Images RF

CHAPTER

© Ryan McVay/Getty Images RF
3.1 Measures of Center 90
3.2 Measures of Spread 107
3.3 Measures of Position 127

Chapter 3 Summary 143
Chapter Quiz 144
Review Exercises 145
Case Study 148

Probability 149

4.1 Basic Concepts of Probability 150

4.2 The Addition Rule and the Rule of Complements 159
4.3 Conditional Probability and the Multiplication Rule 169
4.4 Counting 181

Chapter 4 Summary 190
Chapter Quiz 191
Review Exercises 192
Case Study 194
CHAPTER 5 Discrete Probability Distributions 197

© Getty Images RF

chapter 6 The Normal Distribution 229
 chapter \bigcirc The Normal Distribution
 229

5.1 Random Variables 198
5.2 The Binomial Distribution 212
Chapter 5 Summary 223
Chapter Quiz 224
Review Exercises 225
Case Study 226

© Steve Allen/Getty Images RF
6.1 The Normal Curve 230
6.2 Sampling Distributions and the Central Limit Theorem 248
6.3 The Central Limit Theorem for Proportions 256
6.4 The Normal Approximation to the Binomial Distribution 262
6.5 Assessing Normality 269
Chapter 6 Summary 279
Chapter Quiz 280
Review Exercises 281
Case Study 282
CHAPTER Confidence Intervals 285

© Royalty-Free/Corbis RF
7.1 Confidence Intervals for a Population Mean, Standard Deviation Known 286
7.2 Confidence Intervals for a Population Mean, Standard Deviation Unknown 304
7.3 Confidence Intervals for a Population Proportion 316
7.4 Determining Which Method to Use 328
Chapter 7 Summary 331
Chapter Quiz 331
Review Exercises 332
Case Study 334
CHAPTER 8
Hypothesis Testing 337
8.1 Basic Principles of Hypothesis Testing 338
8.2 Hypothesis Tests for a Population Mean, Standard Deviation Known 343
8.3 Hypothesis Tests for a Population Mean, Standard Deviation Unknown 367
8.4 Hypothesis Tests for Proportions 381
8.5 Determining Which Method to Use 392
Chapter 8 Summary 394
Chapter Quiz 395
Review Exercises 396
Case Study 398
CHAPTER 9 Inferences on Two Samples 401

© Comstock/Jupiter Images RF
9.1 Inference About the Difference Between Two Means: Independent Samples 402
9.2 Inference About the Difference Between Two Proportions 420
9.3 Inference About the Difference Between Two Means: PairedSamples435
Chapter 9 Summary 450
Chapter Quiz 450
Review Exercises 451
Case Study 455
CHAPTER 10 Tests with Qualitative Data 457
10.1 Testing Goodness of Fit 457
10.2 Tests for Independence and Homogeneity 467
Chapter 10 Summary 477
Chapter Quiz 477
Review Exercises 478
Case Study 480
© Mark Scott/Getty Images RF
chapter 11 Correlation and Regression 483
11.1 Correlation 484
11.2 The Least-Squares Regression Line 496
11.3 Inference on the Slope of the Regression Line 508
11.4 Inference About the Response 524
Chapter 11 Summary 530
Chapter Quiz 531
Review Exercises 532
Case Study 536
Appendix A Tables A-1
Appendix B TI-84 PLUS Stat Wizards B-1
Answers to Selected Exercises (Student edition only) SA-1
Answers to Selected Exercises (Instructor's edition only) IA-1
Index |-1

Index of Applications

Agricultural/gardening/farming applications

effect of herbicide on bean plants, 453
egg diameters, 272
farmland area versus total land area, 489
fertilizer types and vegetable/fruit yields, 25, 342, 418
seed germination probabilities, 268
tree heights, 246
volume of trees versus diameters, 532
weights of Hereford bulls, 252
weights of pumpkins, 329

Archaeological applications

ages of skeletons, 478
mummy's curse at King Tut's tomb, 417

Automotive/motor vehicle

applications
age of driver and accident locations, 425-426
auto insurance risk categories, 158
break pad lifetime, 439-440, 447
car battery lifetimes, 281
car color possibilities, 182
car inspection failures, 221
car repair estimates, 271
car repair probabilities, 167, 181, 219, 250, 268, 271
cars and light trucks sold, 41
commuting to work, 140
driver's license exam attempts, 191
effect of temperature on truck emissions, 446
emissions test failures, 393
fuel efficiency of convertibles and sports cars, 121
gas mileage, 31, 254, 314-315, 331, 435-437
gas prices in selected countries and cities, 102, 347-348
highway mileage ratings for compact cars, 35, 87
license plate possibilities, 182, 188-189
new car sales by brand name, 47
octane rating for gasoline, 333
particulate emissions frequencies at high altitudes, 68, 142, 333, 432
particulate emissions frequencies at sea level, 142
particulate emissions frequencies per gallon of fuel, 49
paved streets versus number of cars in cities, 531
percentage of cars going faster than $75 \mathrm{mph}, 247$
percent of small cars sold from random selection, 166
premium gas effect on maintenance costs, 451
probability for low air pressure in tires, 209
probability of purchasing black SUV, 180
rental car makes, mode of, 96
retail prices for BMW autos, 62, 72
satisfaction with new car, 262
speed of cars and noise of street, 522, 529
tire lifetimes, 246
tires and fuel economy, 447
weight of trucks and fuel economy, 533

Aviation applications

delayed flight probabilities, 221
departure and arrival delays in U.S., 532
getting a seat on airline, 268-269
noisy airport effect on health, 31
types of aircraft landing at small airport, 38, 48

Behavioral study applications

age at which children first form words, 313
counseling to help people lose weight, 378
enjoyment of competitive situations, 387, 392
holiday shopping behavior, 451
hours spent sleeping, 315, 333
low-fat and low-carb diet effectiveness, 417
nicotine patch to quit smoking, 390
phonics instruction for children, 313
rats in maze, 61
reaction time after drinking alcohol, 440-441
smoking prohibition in public, 475
weight loss diet, 366-369, 380, 417

Beverage applications

active breweries in selected states, 101-102, 122
amounts of beverage in cans, 297, 378-379
carbohydrates in espresso beverages, 141
coffee maker prices, 145
drinking and driving, 11, 104
reaction time after drinking alcohol, 440-441
salaries of college professors versus beer consumption, 490-491, 496
volume of beverage in a can, 246-247
Biology/life science applications
birth weights of newborn babies, 124, 245
blood types of humans, 44, 192, 222
body mass index and diabetes, 418
butterfly lifespan versus wingspan, 495, 506-507, 522, 529
cholesterol levels for adults, 254, 432, 447
days of week when children likely to be born, 460
diastolic blood pressure, 245
fish lengths, 245
fish weights, 278, 342
flounder lengths, 140, 411
half-life of drugs in human body, 314
height and length of forearm, 532
height and weight for adult males, 126
heights for adult females, 127, 234
heights of adult male humans, 244, 251
heights of fathers and sons, 521-522, 529
heights of male college students, 60-61
heights of mothers and daughters, 532
lengths of newborn babies, 119
pregnancy lengths in humans, 236-237
rats in maze, 61
systolic blood pressure, 118
waist size of men aged 20-29, 333
weight of mice, 297
weights of baby boys, $222,245,268,301$, 339, 378
weights of baby girls, 313-314
weights of chickens, 245
weights of large dogs, 342
weights of male college students, 67

Business applications

adults who work two jobs, 261
advertising spending, 103, 147
age discrimination at work, 475
amount of money saved by U.S. residents, 80
annual earnings of family practitioners, 378
annual income, 143, 451
annual income of college graduates, 303
annual returns for selected investment stocks, 123
annual salaries and raises, 107
auto insurance risk categories, 158
banking hours survey, 29
bus schedule changes, 11
CD sales decline, 79
cell phone features, 11
coffee maker prices, 145
commercials on TV, 281
companies planning to increase workforce, 327
compensations for chief executives, 314
computer use at work, 420-421
corporate profits, 145,148
credit card annual interest rates, 332
credit scores, 378
day and night shift choices, 189
delivery trucks load weights, 281
digital music sales growth, 85
digital music sales retail values, 86
Dow Jones industrial average by year, 69-70, 80
ease of finding new job, 226
electricity costs, 126
email spam received at company computers, 389
federal income tax mean amounts, 254, 281
federal support amounts for arts programs, 145
firms with more than 15 employees, 323
flextime choices, 451,452
fuel efficiency of convertibles and sports cars, 121
gas mileage, 31, 254, 314, 331, 435-436
gas prices in selected countries and cities, 102, 347-348
gender and management jobs, 180
HDTV prices, 314
health insurance benefits, 326
house prices in selected metropolitan areas, 102, 123, 364
income tax for high incomes, 462
inflation rate versus unemployment rate, 536
insurance premium prices, 208, 211
Internet monthly costs, 124
job interview probabilities, 172, 179
job satisfaction, 397
job security, 46-47
life insurance ages and policy charges, 194-195
magazine subscription rates, 103
magnitude of stock market drop, 80
marketing survey questions, 18,322
mortgage interest rates, $314,495,506$
music sales by type, 47,85
new car sales by manufacturer, 47
new product rating survey, 476
nonfarm workers who are government employees, 261
number of days between bills mailed out and payment made, 124-125, 158
on-site day care, 12
percentage not paying income tax, 262
profit expected value, 207
purchase return rates at clothing store, 225
quality control, 11, 147, 180, 224
retail prices for BMW autos, 62,72
salaries of recent college graduates, 280
sales commissions, 452
service occupation and gender, 180
starting salaries, 145
start-up business becoming profitable or not, 192, 211
stock prices, 103, 123, 146, 302, 391, 396
stressful jobs, 222, 268
tall men as business executives, 353-354
technology firm salaries, 72
time needed to complete tasks, 278
travel time of business trips, 342
unemployment rate in U.S. by year, 73
utility company survey, 30
visitors to popular websites, 40
weekly earnings, 262
workers who changed jobs in past 6 months, 327
Chemicals/chemistry applications
carbon monoxide concentration, 316
computer chip coatings, 146
half-life of drugs in human body, 314
Computer applications. See
Electronics/computer
applications

Construction/home improvement/

home purchases and sales applications
concrete block testing, 327
concrete expansion over time, 522, 529
concrete strength, 446
house prices in selected metropolitan areas, 102-103, 123
rivet lengths, 146
size of house and selling price, 484-485, 500-501
square feet of U.S. homes, 394

Crime applications

effectiveness of police department, 29
murder rate by population numbers in U.S. cities, 62
number of police versus number of crimes, 495
taxicabs and crime, 25
violent crime rates, 466

Earth sciences applications

geyser eruption timetable, 62
silver ore amounts in rocks, 64

Education/school applications

Advanced Placement tests taken and their scores, 225
age at which children first form words, 313
age of college student randomly chosen, 164, 166
ages of students at public high school, 206
age versus education level, 495
annual income of college graduates, 303
arithmetic teaching method effectiveness, 365-366
attitudes toward school, 303
choosing books to study from, 188
choosing required courses, 193
college enrollment of males and females, 73-74
college graduates working at home, 326
college seniors finding jobs, 323
college tuition and fees, 378
computer programming class for middle school, 304
computer programming teaching method, 428
computer use in math classes, 405-406
confidence in educational institutions, 158
course choice probabilities, 192
daily student absences, 132, 135-136, 480
dropout rates of boys and girls, 180
dropouts and GED attainment, 180
drug use in high school, 29, 70
educational attainment, 47
educational level and income, 505
education level of women, 479
education levels and gender of persons over 171-172
effectiveness of math skills improvement program, 333
effect of hip-hop on music education, 320-321
electronic-based assignments and homework, 31
enrollment and acceptance probabilities, 269
exam grade percentiles, 247
exam score median/mean, 90-92, 106
executive committee selection for student government, 169, 189
extracurricular activities of college freshmen, 201
Facebook use in college, 281, 396
females as business majors, 193
final grades of randomly chosen students, 165, 168, 192
freshmen majoring in STEM disciplines, 261
gender bias in college admissions, 480-482
GPA for random sample of college students, 303, 365
grade and gender probabilities, 168
grade distribution, 465
heights of selected students, 60, 107
homework assignment scores, 106
hours of sleep per night for freshmen, 315
hours spent on hybrid college course, 313
hours spent studying, 83, 144, 247
impression of online learning courses, 313
improving SAT scores with coaching, 343-345, 349
IQ test scores, 292, 297, 343
listening to music while studying, 191
math and reading assessment, 489, 499
math SAT test scores, 254, 301, 326, 364, 366
math skills of second-graders, 364
mean age of college students, 252
multiple choice exam questions, 183 , 211, 221
number of text messages sent by high school students, 97, 113-114
numbers enrolled in grades 1 through 8, 211
numbers of courses taken in college, 202
numbers of siblings of school children, 63, 96
parents saving for children's college, 394
parking on campus, 11
percentage of elementary students being girls, 281
percentage of students graduating, 261
percentile exam scores, 132
percent of students not completing homework, 84
phonics instruction for children, 313
placement exam for college, 275
probability of attending college, 172,222 , 266-267
probability of choosing math major, 155
quality of cafeteria food in college, 226
quartile exam scores, 132
quiz scores, 84-85
reading improvement, 11,438
reading levels of fourth-graders, 226
reading proficiency of elementary school children, 326
reading program enrollment, 433
reading scores on test, 278
reading skills improvement, 319
salaries of college professors versus beer consumption, 490-491
SAT writing scores and years of study in English, 533
semester pretest and end test, 451
shoe size versus vocabulary scores, 490
standardized test scores, 140, 339
starting salaries of recent college graduates, 280, 341
student loan debt, 261
student satisfaction with college, 391
students with runny nose or sore throat, 168
study time for some college majors, 467-468
teacher salaries, 394
time spent watching TV, 292
true/false exam questions, 158, 183, 205, 221, 466
vocabulary size and student heights, 25
vocabulary teaching method effectiveness, 296
weights of male college students, 67 years of education for adults, 355-356
Elderly individuals applications
heart attacks by gender and age, 193
height and age of older men, 364
hospital survey, 11
longevity and life insurance, 32
sleep apnea in ages over 65,326

Electronics/computer applications

ages of video gamers, 46
Samsung smartphone prices, 301
CD sales decline, 79, 85-86
cell phone features, 11
cell phone ringtones, 16
cell phone usage exclusively by year, 83
computer chip coatings, 146
computer chips manufactured on cheaper machines, 434
computer crash frequencies, 375,418
computer memory choices, 183
computer password possibilities, 189, 192
computer prices, 144
computer programming teaching method, 428
computer purchase types, 167
computer speeds, 447
cost of cable TV, 390
Smart phone, 325
dampness and electrical connections, 428-429
defective cell phone batteries, 167, 224-225
defective circuits, 210
defective components, 393, 432-433
defective computer chips, 260, 321
defective pixels in computer monitor, 203, 206
digital music sales growth, 85-86
digital music sales retail values, 86
electronic component repairs, 332-333
email spam received at company computers, 389
frequency of backing up hard drives, 47
Google as primary search engine, 167 , 221, 268
Internet monthly costs, 124
Internet usage, 417
iPod sales by year, 45
lifetime of electronic components, 302
music sales by type, 47
number of children with cell phones, 390
playlist selection probabilities, 179
popular Facebook applications, 101
product and delivery satisfaction of e-store, 29
reconstructing table after printer failure, 479
recycled silicon wafers, 148
technology firm salaries, 72
teenagers playing video games on cell phones, 261
time cell phone keeps a charge, 332
top ten PC games, 17
video games sold, 44, 45
video running times, 280
virus and worm probabilities, 167
visitors to popular websites, 40
Entertainment applications. See also Gambling applications
ages of Grammy award winners, 254
cable news watching, 398

CD sales decline, 79
choosing marbles in a jar, 191
coin toss, 154
critical strikes in World of War computer game, 326
effect of video games on music education, 316-320
Facebook rating by students, 381-383
German child and recognizing SpongeBob, 157, 180
Google as primary search engine, 167
Internet usage, 417
Modern Warfare 2 game, 218
movie running times, 313
pool ball ordering, 192
popular Facebook applications, 101
recreation fee increase, 11
roller coaster design, 255
target shooting probabilities, 180
television viewing habits, 11
time spent per visit to Facebook, 364
time spent playing video games, 62
time spent watching TV, 378
top-grossing movies, 17, 72-73
top-rated TV programs, 101, 122-123
top ten PC games, 17

Environmental applications

air pollution and respiratory problems, 25, 32-33
ambient temperature and evaporation rate of water, 523
ammonium contamination of water wells, 247
benzene in water at gas field, 396, 408-409, 417-418
carbon dioxide emissions per person, 494, 505
carbon monoxide concentration, 316
cost of environmental restoration, 332
days of excessive air pollution, 210
effect of temperature on truck emissions, 446
geyser eruption timetable, 62-63
global warming, 16
hazardous waste sites, 140
humidity and ozone levels, 523, 529-530
lead in drinking water, 326, 365
leaking underground storage tanks, 333
mercury pollution in lake, 394
ozone pollution and lung function, 427
PCB contamination of rivers, 333
pollution from new wood stoves, 334-335
Exercise applications. See Sports/ exercise/fitness applications

Farming applications. See
 Agricultural/gardening/farming applications

Food applications

active breweries in selected states, 101-102, 122
caffeine content of coffee, 342
calories in fat, 514-515, 524-526
calories in hamburgers from fast-food restaurants, 100, 138
calories and protein, 521, 529
cereal box weights, 255, 293-295, 314, 339, 340-341
cracker box weights, 397
dessert choices, 192
eating fruits and vegetables and developing colon cancer, 25
egg and milk prices, 493, 505
food expenditures in U.S., $45,74,81$
ice cream flavors, 188
menu test marketing by restaurants, 179
mineral content of kale, 315
mineral content of spinach, 314
number of dinner customers at restaurant, 379
pizza topping choices, 188
sugar content of syrup, 397
Gambling applications
annual income before and after winning lottery, 93-94, 106
betting on horses, 188
blackjack, 189
card drawing, 175-176
choosing marbles in a jar, 191
coin toss, 154, 157-158, 173, 177, 179, 191, 193, 213-214, 256-257, 264-265, 269
Colorado Lottery Lotto, 189-190
craps betting, 211, 226
die rolling, $158,159,167,175,179,192$, 221, 248-249, 459-460, 466, 477
Georgia Cash-4 Lottery, 152
Georgia Fantasy Lottery, 189
lottery, 181, 211, 226, 465
pool ball ordering, 192
Powerball fairness, 465, 480
raffle, 11
roulette wheel spinning, 157, 158, 207
slot machine playing, 192
Texas hold'em card game, 189
Gardening applications. See
Agricultural/gardening/farming applications

Genetics/gender applications

age at which women first marry, 81
birth order and intelligence, 417
birth rate of women aged 15-44, 86
DNA locations on chromosome, 476
dominant or recessive gene possibilities, 179
education levels and gender of persons over 25, 171-172
gender and management jobs, 180 gender bias in college admissions, 480-482 gender probabilities for children in family, 153, 200-201
gene combination possibilities, 189
height relative to gender of humans, 127
inheriting cystic fibrosis, 153-154
live births to women by age, 56
Mendel's laws of heredity, 219, 268
number of children a woman has, 202-203
percentage of elementary students being girls, 281
political party and gender, 168
prize winners and gender possibilities, 186
probability that newborn baby is boy, 155-156
service occupation and gender, 180
sickle-cell anemia probabilities, 226
weights of boys versus girls, 418
women never married, by age group, 80

Health/healthcare applications. See also Medical/medical research/ alternative medicine applications asthma patients in hospitals, 159
blood pressure in males and females, 140
blood pressure probabilities, 200, 222, 261-262, 268
calories in hamburgers from fast-food restaurants, 100, 138
carbohydrates in espresso beverages, 141
childhood obesity, 432
cholesterol levels in men, 432
cholesterol levels in women, 140
choosing a doctor, 390
cold medication effectiveness, 25
coronary bypass surgery and age, 222
days with pain before seeking treatment, 210-211
drug concentration in bloodstream over time, 278
eating fruits and vegetables and developing colon cancer, 25
exercise and heart rate, 453
FEV for 10-year-old boys, 364
fluoridation and tooth decay, 31
formaldehyde and respiratory problems, 25
headache drug testing, 11
heavy weights of children, 364
heights of U.S. women aged 20-29, 100
hospital survey, 11
lead in drinking water, 326, 365
living to certain age intervals, 194-195
longevity and life insurance, 32
low-fat and low-carb diet effectiveness, 417
nicotine patch to quit smoking, 390
noisy airport effect on health, 31
ozone pollution and lung function, 427-428
pain reliever effectiveness, 24,424
percentage of adults visiting a doctor, 260
percentage of adults with high blood pressure, 261-262
pulse rate measuring, 270
radiation and lung cancer, 24
reasons for hospital admissions, 46
respiratory health and air pollution, 22, 24
smoking/drinking and liver cancer, 22
smoking prohibition in public, 475
smoking-related deaths, 159
stressful jobs, 222
systolic blood pressure, 118
trust placed in doctors, 83-84
weight loss diet, 366-369, 380, 417

Library/book applications

ages of library patrons, 167
best fiction books, 16
book arrangements on shelf, 193
choosing books to study from, 188
favorite news sources, 105
favorite type of book of library patrons, 105
magazine subscription rates, 103-104
online dictionary lookups, 17
patrons buying book and paying with credit card, 191
reading improvement, 11
time required to review submissions for publication, 124

Life sciences applications. See

Biology/life sciences applications

Manufacturing applications

accuracy of can/bag-filling machines, 310, 378-379
accuracy of laboratory scale, 293, 446
assembly line failure rates, 478
assembly line quality, 479
battery lifetimes, 113, 146, 255, 292, 281, 360
battery testing, 111
calibration of scales, 342-343, 364
ceramic tiles with surface defects, 262
computer chips manufactured on cheaper machines, 434
defective components/items, 180-181, 192, 203, 210, 222, 278, 282, 393, 451
drill lifetimes, 332
drying time of paint versus an additive, 533-534
efficient precision manufacturing, 247, 302
flaws in aluminum parts, 168
impurities in aluminum cans, 278
lightbulb lifetimes, 281, 310
oven thermostat testing, 270
quality control, 147, 180, 224
recycled silicon wafers, 148
rivet lengths, 146
shoe leather testing, 272
steel rod length sampling, 298
strength of aluminum cans, 282-283
time cookies spend in store before being bought, 331-332

Medical/medical research/

 alternative medicine applications.
See also Health/healthcare

 applicationsannual earnings of family practitioners, 378
antifungal drug testing, 379
beryllium disease, 475
blood pressure drug testing, 410-411, 441
blood pressure measuring, 495, 506, 522, 529
cholesterol levels and age, 523, 530
choosing a doctor, 390
cold medication effectiveness, 25
colonoscopy to prevent cancer, 433
coronary bypass surgery and age, 222
disease testing outcome probabilities, 181
DNA locations on chromosome, 476
drug concentration in bloodstream over time, 278, 379
drugs to lower cholesterol, 301, 447
drugs to prevent heart attack, 432, 471-472
eating fruits and vegetables and developing colon cancer, 25
exercising and blood pressure, 24-25
FEV for 10-year-old boys, 364
foot temperatures and diabetes, 494, 506
generic drug testing, 371-372
half-life of drugs in human body, 314
headache drug testing, 11
heart attacks by gender and age, 193
heart rates of babies with nonsmoking/ smoking mothers, 25
house size and recovery from heart attacks, 25
improvement after surgery at hospitals, 479
inheriting cystic fibrosis, 153-154
kidney transplants for ages under 18, 262
knee replacements resulting in complications, 326-327
lengths of hospital stay, 366, 380
lengths of newborn babies, 119
medications administered by syringe, 281
new drug testing, 410-411, 441-442, 445-447
new versus standard treatment for heart failure, 455
pain reliever effectiveness, 24,314 , 445-446
patient safety in hospitals, 73
random sampling of bypass surgery patients, 298
recovery time after surgery, 92-93, 146, 417, 453
reducing volume of stomach to cure diabetes, 390
Salk polio vaccine trials, 26
sickle-cell anemia probabilities, 226
side effects from medical procedure, 282
sleep apnea in ages over 65,326
starting salaries for physicians, 392-393
stent use requiring additional treatment, 396
surgery time for hip replacement, 313
systolic blood pressure, 118, 410-411
trust placed in doctors, 83-84

Miscellaneous applications

age and residence probabilities, 174
ages of residents of selected town, 104, 124
annual income before and after winning lottery, 93-94, 106
annual incomes, 143, 451
apartment rent, 146, 254, 339, 398
children who own cell phones, 326
committee member choosing, 185, 189
credit card charges, 304
customer spending at restaurant, 339, 342
days with pain before seeking treatment, 210-211
elevator design, 255
event attendees and random selection for prizes, 186
event probabilities, 157
Facebook use in college, 281
false fire alarms by month, 466
family size, 475
favorite news sources, 105
federal support amounts for arts programs, 145
free T-shirts to randomly sampled students, 177
frequency of first digits in probabilities, 226-228
hours spent on Internet for ages 18-22, 308-309
hours spent relaxing each day, 210
hours spent sleeping, 333
hours watching TV, 249
household electric bills, 246
household energy efficiency, 533
household income mean and median, 106
household income versus energy consumed, 534
households that reduce water consumption, 332
households with dog or cat as pet, 191
tablet computer, 215
households with TV sets, 254
income of parents and IQs of their children, 505
IQ score percentiles, 240
job security, 46-47
ladies' shoe sizes, 394
languages spoken at home, 48
lightbulb selection, 186-187
listening to songs in random order, 193
mall shopping, 11
mean annual income, 255
mean population of U.S., 315
measuring a tennis ball, 146
Mensa IQ scores, 239
menu test marketing by restaurants, 179
music sales by type, 47
mutually exclusive events, 167
new parking structure survey, 332
number of boys in family, 204-205, 478
number of children a woman has, 158-159, 202-203
number of children with cell phones, 390
number of customers in line at checkout, 209
number of dinner customers at restaurant, 379
number of occupants in carpool, 210
number of PCs in households, 301
number of people in households, 303
number of teenagers sending text messages, 210
number of TV sets in household, 397
parking spaces, 201
numbers of children of U.S. presidents, 68
numbers of pets in families, 224
numbers of siblings of school children, 63
numbers who read daily newspaper, 383-384 on-site day care, 12
opinion survey, 11
owners and renters among town population, 154-155
percentage not paying income tax, 262
percentage of population aged 65 and over, 115-116
personal incomes per capita of U.S. states, 105
populations of largest U.S. cities, 133
poverty rates for children in Colorado, 84
prize-winning at fast-food restaurant, 257
proportions living in geographic regions of U.S., 466
random-digit and landline dialing for surveys, 29
recycled newspaper collection amounts, 271 refrigerator prices, 379
refugees admitted to U.S., 41-42
sentence completion choices, 190
sizes of households, 397
smoke detector probabilities, 178
soap weights, 147
spending habits survey, 11
technology firm salaries, 72
time for fluorescent bulb to reach brightness, 235
traffic light color probabilities, 167
types of employment for U.S. residents, 39
types of occupation and educational level, 163
unemployment rate in U.S. by year, 73
vacancy rate in apartments, 73
visitors to popular websites, 40

Motor vehicles applications. See Automotive/motor vehicles applications

Nuclear applications

hazardous waste sites, 140
nuclear power survey, 29
nuclear reactors in selected countries, 141 radon level in homes, 245-246

Political applications

abortion voting preferences, 466
ages at death of British monarchs, 85
ages at death of U.S. presidents, 85
Congress' handling of economy, 29
economic conditions survey, 16, 327
effectiveness of women in government, 327-328
election reform survey, 29
electoral votes cast by states, 75
government funding for arts and culture, 493-494, 505
health-care survey, 32
heights of U.S. presidents, 315
Literary Digest election polling, 29
military spending in U.S., 73
number of words in inaugural addresses, 63, 141
numbers of children of U.S. presidents, 68
numbers of female and male senators, 81
numbers of freshmen elected to U.S. House, 85
optimism about economic status, 433, 466, 476-477
political party and gender, 168, 179
satisfaction with presidential candidates, 327
support for bond issue, 156
voter preferences, 11, 268, 281-282, 391
voter sampling, 177, 191, 221, 259-260, 268, 321
voting for bonds, 452
voting for government support for higher education, 160-162
voting for mayor/governor, 157, 391, 451

Psychological applications

enjoyment of competitive situations, 387
multiple-choice questions order, 29, 183, 211, 221
rats in maze, 61, 273
true/false exam questions, 158, 183, 205, 221
visual and auditory reaction times, 522, 529

Safety applications

cell phone usage and driving, 31
drinking and driving, 11, 104
effectiveness of police department, 29
patient safety in hospitals, 73
seat belt effectiveness, 29
smoking prohibition in public, 475
smoking-related deaths, 159
School applications. See Education/ school applications

Sociological applications
age at which women first marry, 81
ages of video gamers, 46
Facebook rating by students, 381-383
interest in educational issues related to museum visiting, 475
Internet usage, 417
job satisfaction, 158
languages spoken at home, 48
opinion survey, 11
populations of continents, 46
poverty rates for children in Colorado, 84
refugees admitted to U.S., 41-42
spending habits survey, 11
tall men as business executives, 353-354
tattoos in ages 18-29, 390
time spent watching TV, 378
women never married, by age group, 80

Sports/exercise/fitness applications

ages of tennis and golf tournament winners, 72
baseball pitching, 158
baseball runs scored, 396
baseball salaries, 75, 134-135, 142
batting averages, 61-62
bench press weights lifted, 450
bowling score probabilities, 180
bowling scores, 106,280
drag racer stopping probabilities, 192
exercise and heart rate, 453
exercising and blood pressure, 24-25
football player weights/heights, 103, 121-122, 494, 505
football turnover margin and wins, 533
gold medals won by Michael Phelps, 100
gold medals won by U.S. in Olympics, 74
lifeguard duty roster choices, 184-185
measuring a tennis ball, 146
Olympic athletes representing U.S. and Canada, 164-165
proportion of people who watched Super Bowl, 333
running a race outcomes, 183-184
soccer goals scored, 211
weight of person versus weightlifting capacity, 502-503
Travel applications
commuting distances, 255
distances traveled to work, 63-64, 255, 378
traffic congestion worsening, 332
traffic speed at intersection, 411

Weather applications

annual precipitation/rainfall, 119, 137-138, 333
daily temperatures, $72,73,133$
mean temperature, 126
monthly rainfall, 131-132, 143
quartile rainfall, 128-130
rain probabilities, 193, 225, 226
snowfall amounts, 74, 132, 433
temperature ranges, 108-109, 254
temperature variance, 109-110
warming trends in Washington, D.C., 398-399
wind speeds in San Francisco, 141

U.S. Fish \& Wildlife Service

Basic Ideas

Introduction

How does air pollution affect your health? Over the past several decades, scientists have become increasingly convinced that air pollution is a serious health hazard. The World Health Organization has estimated that air pollution causes 2.4 million deaths each year. The health effects of air pollution have been investigated by measuring air pollution levels and rates of disease, then using statistical methods to determine whether higher levels of pollution lead to higher rates of disease.

Many air pollution studies have been conducted in the United States. For example, the town of Libby, Montana, was the focus of a recent study of the effect of particulate matter - air pollution that consists of microscopic particles - on the respiratory health of children. As part of this study, parents were asked to fill out a questionnaire about their children's respiratory symptoms. It turned out that children exposed to higher levels of particulate pollution were more likely to exhibit symptoms of wheezing, as shown in the following table.

Level of Exposure	Percentage with Symptoms
High	8.89%
Low	4.56%

The rate of symptoms was almost twice as high among those exposed to higher levels of pollution. At first, it might seem easy to conclude that higher levels of pollution cause symptoms of wheezing. However, drawing accurate conclusions from information like this is rarely that simple. The case study at the end of this chapter will present more complete information and will show that additional factors must be considered.

Objectives

1. Construct a simple random sample

2. Determine when samples of convenience are acceptable
3. Describe stratified sampling, cluster sampling, systematic sampling, and voluntary response sampling
4. Distinguish between statistics and parameters

In the months leading up to an election, polls often tell us the percentages of voters that prefer each of the candidates. How do pollsters obtain this information? The ideal poll would be one in which every registered voter were asked his or her opinion. Of course, it is impossible to conduct such an ideal poll, because it is impossible to contact every voter. Instead, pollsters contact a relatively small number of voters, usually no more than a couple of thousand, and use the information from these voters to predict the preferences of the entire group of voters.

The process of polling requires two major steps. First, the voters to be polled must be selected and interviewed. In this way the pollsters collect information. In the second step, the pollsters analyze the information to make predictions about the upcoming election. Both the collection and the analysis of the information must be done properly for the results to be reliable. The field of statistics provides appropriate methods for the collection, description, and analysis of information.

DEFINITION

Statistics is the study of procedures for collecting, describing, and drawing conclusions from information.

The polling problem is typical of a problem in statistics. We want some information about a large group of individuals, but we are able to collect information on only a small part of that group. In statistical terminology, the large group is called a population, and the part of the group on which we collect information is called a sample.

Explain It Again

Why do we draw samples?
It's usually impossible to examine every member of a large population. So we select a group of a manageable size to examine. This group is called a sample.

DEFINITION

- A population is the entire collection of individuals about which information is sought.
- A sample is a subset of a population, containing the individuals that are actually observed.

Ideally, we would like our sample to represent the population as closely as possible. For example, in a political poll, we would like the proportions of voters preferring each of the candidates to be the same in the sample as in the population. Unfortunately, there are no methods that can guarantee that a sample will represent the population well. The best we can do is to use a method that makes it very likely that the sample will be similar to the population. The best sampling methods all involve some kind of random selection. The most basic, and in many cases the best, sampling method is the method of simple random sampling.

Simple Random Sampling

To understand the nature of a simple random sample, think of a lottery. Imagine that 10,000 lottery tickets have been sold, and that 5 winners are to be chosen. What is the fairest way to choose the winners? The fairest way is to put the 10,000 tickets in a drum, mix them thoroughly, then reach in and draw 5 tickets out one by one. These 5 winning tickets are a simple random sample from the population of 10,000 lottery tickets. Each ticket is equally likely to be one of the 5 tickets drawn. More importantly, each collection of 5 tickets that can be formed from the 10,000 is equally likely to comprise the group of 5 that is drawn.

DEFINITION

A simple random sample of size n is a sample chosen by a method in which each collection of n population items is equally likely to make up the sample, just as in a lottery.

Since a simple random sample is analogous to a lottery, it can often be drawn by the same method now used in many lotteries: with a computer random number generator. Suppose there are N items in the population. We number the items 1 through N. Then we generate a list of random integers between 1 and N, and choose the corresponding population items to comprise the simple random sample.

EXAMPLE 1.1 Choosing a simple random sample

There are 300 employees in a certain company. The Human Resources department wants to draw a simple random sample of 20 employees to fill out a questionnaire about their attitudes toward their jobs. Describe how technology can be used to draw this sample.

Solution

Step 1: Make a list of all 300 employees, and number them from 1 to 300.
Step 2: Use a random number generator on a computer or a calculator to generate 20 random numbers between 1 and 300 . The employees who correspond to these numbers comprise the sample.

EXAMPLE 1.2 Determining whether a sample is a simple random sample

A physical education professor wants to study the physical fitness levels of students at her university. There are 20,000 students enrolled at the university, and she wants to draw a sample of size 100 to take a physical fitness test. She obtains a list of all 20,000 students, numbered from 1 to 20,000 . She uses a computer random number generator to generate 100 random integers between 1 and 20,000, then invites the 100 students corresponding to those numbers to participate in the study. Is this a simple random sample?

Solution

Yes, this is a simple random sample because any group of 100 students would have been equally likely to have been chosen.

EXAMPLE 1.3 Determining whether a sample is a simple random sample

The professor in Example 1.2 now wants to draw a sample of 50 students to fill out a questionnaire about which sports they play. The professor's 10:00 A.M. class has 50 students. She uses the first 20 minutes of class to have the students fill out the questionnaire. Is this a simple random sample?

Solution

No. A simple random sample is like a lottery, in which each student in the population has an equal chance to be part of the sample. In this case, only the students in a particular class had a chance to be in the sample.

EXAMPLE 1.4 In a simple random sample, all samples are equally likely

To play the Colorado Lottery Lotto game, you must select six numbers from 1 to 42 . Then lottery officials draw a simple random sample of six numbers from 1 to 42 . If your six numbers match the ones in the simple random sample, you win the jackpot. Sally plays the lottery

EXAMPLE 1.5 Using technology to draw a simple random sample

Use technology to draw a simple random sample of five employees from the following list.

1. Dan Aaron	11. Johnny Gaines	21. Jorge Ibarra	31. Edward Shingleton
2. Annie Bienh	12. Carlos Garcia	22. Maurice Jones	32. Michael Speciale
3. Oscar Bolivar	13. Julio Gonzalez	23. Jared Kerns	33. Andrew Steele
4. Dominique Bonnaud	14. Jacqueline Gordon	24. Kevin King	34. Neil Swain
5. Paul Campbell	15. James Graves	25. Frank Lipka	35. Sherry Thomas
6. Jeffrey Carnahan	16. Ronald Harrison	26. Carl Luther	36. Shequiea Thompson
7. Joel Chae	17. Andrew Huang	27. Laverne Mitchell	37. Barbara Tilford
8. Dustin Chen	18. Anthony Hunter	28. Zachary Quesada	38. Jermaine Tryon
9. Steven Coleman	19. Jonathan Jackson	29. Donnell Romaine	39. Lizbet Valdez
10. Richard Davis	20. Bruce Johnson	30. Gary Sanders	40. Katelyn Yu

Solution

We will use the TI-84 Plus graphing calculator. The step-by-step procedure is presented in the Using Technology section on page 9 . We begin by choosing a seed, which is a number that the calculator uses to get the random number generator started. Display (a) shows the seed being set to 21 . (The seed can be chosen in almost any way; this number was chosen by looking at the seconds display on a digital watch.) Display (b) presents the five numbers in the sample.

The simple random sample consists of the employees with numbers $27,39,30,35$, and 17. These are Laverne Mitchell, Lizbet Valdez, Gary Sanders, Sherry Thomas, and Andrew Huang.

Check Your Understanding

1. A pollster wants to estimate the proportion of voters in a certain town who are Democrats. He goes to a large shopping mall and approaches people to ask whether they are Democrats. Is this a simple random sample? Explain.
2. A telephone company wants to estimate the proportion of customers who are satisfied with their service. They use a computer to generate a list of random phone numbers and call those people to ask them whether they are satisfied. Is this a simple random sample? Explain.

Objective 2 Determine when samples of convenience are acceptable

EXAMPLE 1.6

© Creatas Images/Jupiterimages RF

CAUTION

Don't use a sample of convenience when it is possible to draw a simple random sample.

Samples of Convenience

In some cases, it is difficult or impossible to draw a sample in a truly random way. In these cases, the best one can do is to sample items by some convenient method. A sample obtained in such a way is called a sample of convenience.

DEFINITION

A sample of convenience is a sample that is not drawn by a well-defined random method.

Drawing a sample of convenience

A construction engineer has just received a shipment of 1000 concrete blocks, each weighing approximately 50 pounds. The blocks have been delivered in a large pile. The engineer wishes to investigate the crushing strength of the blocks by measuring the strengths in a sample of 10 blocks. Explain why it might be difficult to draw a simple random sample of blocks. Describe how the engineer might draw a sample of convenience.

Solution

To draw a simple random sample would require removing blocks from the center and bottom of the pile, which might be quite difficult. One way to draw a sample of convenience would be to simply take 10 blocks off the top of the pile.

Problems with samples of convenience

The big problem with samples of convenience is that they may differ systematically in some way from the population. For this reason, samples of convenience should not be used, except in some situations where it is not feasible to draw a random sample. When it is necessary to draw a sample of convenience, it is important to think carefully about all the ways in which the sample might differ systematically from the population. If it is reasonable to believe that no important systematic difference exists, then it may be acceptable to treat the sample of convenience as if it were a simple random sample. With regard to the concrete blocks, if the engineer is confident that the blocks on the top of the pile do not differ systematically in any important way from the rest, then he can treat the sample of convenience as a simple random sample. If, however, it is possible that blocks in different parts of the pile may have been made from different batches of mix, or may have different curing times or temperatures, a sample of convenience could give misleading results.

SUMMARY

- A sample of convenience may be acceptable when it is reasonable to believe that there is no systematic difference between the sample and the population.
- A sample of convenience is not acceptable when it is possible that there is a systematic difference between the sample and the population.

Some Other Sampling Methods
 \section*{Stratified sampling}

In stratified sampling, the population is divided into groups, called strata, where the members of each stratum are similar in some way. Then a simple random sample is drawn from each stratum. Stratified sampling is useful when the strata differ from one another, but the individuals within a stratum tend to be alike.

EXAMPLE 1.7 Drawing a stratified sample

A company has 1000 employees, of whom 800 are full-time and 200 are part-time. The company wants to survey 50 employees about their opinions regarding benefits. Attitudes toward benefits may differ considerably between full-time and part-time employees. Why might it be a good idea to draw a stratified sample? Describe how one might be drawn.

Solution

If a simple random sample is drawn from the entire population of 1000 employees, it is possible that the sample will contain only a few part-time employees, and their attitudes will not be well represented. For this reason, it might be advantageous to draw a stratified sample. To draw a stratified sample, one would use two strata. One stratum would consist of the full-time employees, and the other would consist of the part-time employees. A simple random sample would be drawn from the full-time employees, and another simple random sample would be drawn from the part-time employees. This method guarantees that both full-time and part-time employees will be well represented.

Explain It Again

Example of a cluster sample: Imagine drawing a simple random sample of households, and interviewing every member of each household. This would be a cluster sample, with the households as the clusters.

EXAMPLE 1.8 Drawing a cluster sample

To estimate the unemployment rate in a county, a government agency draws a simple random sample of households in the county. Someone visits each household and asks how many adults live in the household, and how many of them are unemployed. What are the clusters? Why is this a cluster sample?

Solution

The clusters are the groups of adults in each of the households in the county. This a cluster sample because a simple random sample of clusters is selected, and every individual in each selected cluster is part of the sample.

Explain It Again

The difference between cluster sampling and stratified sampling: In both cluster sampling and stratified sampling, the population is divided into groups. In stratified sampling, a simple random sample is chosen from each group. In cluster sampling, a random sample of groups is chosen, and every member of the chosen groups is sampled.

Systematic sampling

Imagine walking alongside a line of people and choosing every third one. That would produce a systematic sample. In a systematic sample, the population items are ordered. It is decided how frequently to sample items; for example, one could sample every third item, or every fifth item, or every hundredth item. Let k represent the sampling frequency. To begin the sampling, choose a starting place at random. Select the item in the starting place, along with every k th item after that.

Systematic sampling is sometimes used to sample products as they come off an assembly line, in order to check that they meet quality standards.

EXAMPLE 1.9 Describe a systematic sample

Automobiles are coming off an assembly line. It is decided to draw a systematic sample for a detailed check of the steering system. The starting point will be the third car, then every fifth car after that will be sampled. Which cars will be sampled?

Solution

© Digital Vision RF
We start with the third car, then count by fives to determine which cars will be sampled. The sample will consist of cars numbered $3,8,13,18$, and so on.

Voluntary response sampling

Voluntary response samples are often used by the media to try to engage the audience. For example, a news commentator will invite people to tweet an opinion, or a radio announcer will invite people to call the station to say what they think. How reliable are voluntary response samples? To put it simply, voluntary response samples are never reliable. People who go to the trouble to volunteer an opinion tend to have stronger opinions than is typical of the population. In addition, people with negative opinions are often more likely to volunteer their responses than those with positive opinions.

Figures 1.1-1.4 illustrate several valid methods of sampling.

Figure 1.1 Simple random sampling

Figure 1.3 Stratified sampling

Figure 1.2 Systematic sampling

Figure 1.4 Cluster sampling

Check Your Understanding

3. A radio talk-show host invites listeners to send an email to express their opinions on an upcoming election. More than 10,000 emails are received. What kind of sample is this?
4. Every 10 years, the U.S. Census Bureau attempts to count every person living in the United States. To check the accuracy of their count in a certain city, they draw a sample of census districts (roughly equivalent to a city block) and recount everyone in the sampled districts. What kind of sample is formed by the people who are recounted?

Objective 4 Distinguish between statistics and parameters

Explain It Again

Statistic and parameter: An easy way to remember these terms is that "statistic" and "sample" both begin with "s," and "parameter" and "population" both begin with "p."
5. A public health researcher is designing a study of the effect of diet on heart disease. The researcher knows that the diets of men and women tend to differ, and that men are more susceptible to heart disease. To be sure that both men and women are well represented, the study comprises a simple random sample of 100 men and another simple random sample of 100 women. What kind of sample do these 200 people represent?
6. A college basketball team held a promotion at one of its games in which every twentieth person who entered the arena won a free basketball. What kind of sample do the winners represent?

Answers are on page 12.

Simple random sampling is the most basic method

Simple random sampling is not the only valid method of random sampling. But it is the most basic, and we will focus most of our attention on this method. From now on, unless otherwise stated, the terms sample and random sample will be taken to mean simple random sample.

Statistics and Parameters

We often use numbers to describe, or summarize, a sample or a population. For example, suppose that a pollster draws a sample of 500 likely voters in an upcoming election, and 68% of them say that the state of the economy is the most important issue for them. The quantity " 68% " describes the sample. A number that describes a sample is called a statistic.

DEFINITION

A statistic is a number that describes a sample.

Now imagine that the election takes place, and that one of the items on the ballot is a proposition to raise the sales tax to pay for the development of a new park downtown. Let's say that 53% of the voters vote in favor of the proposition. The quantity " 53% " describes the population of voters who voted in the election. A number that describes a population is called a parameter.

DEFINITION

A parameter is a number that describes a population.

EXAMPLE 1.10 Distinguishing between a statistic and a parameter

Which of the following is a statistic and which is a parameter?
a. 57% of the teachers at Central High School are female.
b. In a sample of 100 surgery patients who were given a new pain reliever, 78% of them reported significant pain relief.

Solution

a. The number 57% is a parameter, because it describes the entire population of teachers in the school.
b. The number 78% is a statistic, because it describes a sample.

USING TECHNOLOGY

We use Example 1.5 to illustrate the technology steps.

TI-84 PLUS

Drawing a simple random sample

Step 1. Enter any nonzero number on the HOME screen as the seed.
Step 2. Press STO >
Step 3. Press MATH, select PRB, then 1: rand, and then press ENTER. This enters the seed into the calculator memory. See Figure A, which uses the number 21 as the seed.
Step 4. Press MATH, select PRB, then 5: randInt. Then enter $\mathbf{1 , N}, \mathbf{n}$, where \mathbf{N} is the population size and \mathbf{n} is the desired sample size. In Example 1.5, we use $\mathbf{N}=40$ and $\mathbf{n}=5$ (Figure B).
Step 5. Press ENTER. The five values in the random sample for Example 1.5 are 27, 39, 30, 35, 17 (Figure C).
Note that when using this method, you may sometimes
 get a sample in which a number appears more than once. When this happens, just draw another sample.

Figure A

Figure C
$40,5)$
$\{27 \ldots 39 . .30 . .35 .17\}$

